LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc. DEGREE EXAMINATION - **MATHEMATICS**

FIFTH SEMESTER - NOVEMBER 2014

MT 5510 - STATICS

Date: 07/11/2014	Dept. No.	Max.: 100 Marks
Time: 09:00-12:00		

 $PART - A (10 \times 2 = 20)$

Answer **ALL** the questions:

- 1. State the conditions for equilibrium of a system of concurrent forces.
- **2.** State the law of parallelogram of forces.
- 3. Define torque of a force.
- 4. Define cone of friction.
- **5.** What is the centre of gravity of the uniform rod?
- **6.** Define the centre of gravity of a rigid body.
- 7. State any two forces which can be ignored in forming the equation of virtual work.
- **8.** When do you say a body at rest is in unstable equilibrium?
- **9.** Write the intrinsic equation of a catenary.
- 10. Define suspension bridge.

$$PART - B (5 \times 8 = 40)$$

Answer any **FIVE** questions:

- 11. State and prove Lami's theorem.
- 12. A system of forces in the plane of $\triangle ABC$ is equivalent to a single force at A, acting along the internal bisector of the angle BAC and a couple of moment G_1 . If the moments of the system about B and C are respectively G_2 and G_3 , prove that $(b+c)G_1 = bG_2 + cG_3$.
- **13.** State and prove Varignon's theorem on moments.
- **14.** A ladder which stands on a horizontal ground leaning against a vertical wall is so loaded that its centre of gravity is at the distances a and b form the lower and upper ends respectively. Show that if the ladder is in equilibrium, its inclination θ to the horizontal is given by $\tan \theta = \frac{a b\mu\mu'}{(a+b)\mu}$, where μ, μ' are the coefficients of friction between the ladder and the ground and the wall respectively.
- **15.** Determine the centre of gravity of a compound body.
- **16.** Find the centre of gravity of a uniform solid hemisphere of radius r.

- 17. Find the work done in stretching an elastic string from its natural length l to the length l^1 .
- **18.** Find the shape of the catenary when the parameter is very large.

PART – C
$$(2 \times 20 = 40)$$

Answer any **TWO** questions:

19.

- a) The angle between two forces of magnitudes P+Q and P-Q is 2α and the resultant of forces makes angle θ with the bisector of the angle between the forces. Show that $P \tan \theta = Q \tan \alpha$.
- b) O is the circum centre of the $\triangle ABC$. Forces of magnitudes P,Q,R acting respectively along $\overline{OA}, \overline{OB}, \overline{OC}$ are in equilibrium. Prove that $\frac{P}{a^2(b^2+c^2-a^2)} = \frac{Q}{b^2(c^2+a^2-b^2)} = \frac{R}{c^2(a^2+b^2-c^2)}.$ (10+10)

20.

- a) Find the resultant of two like parallel forces P and Q and determine the position of the point of application.
- b) Find the equilibrium of the particle on a rough inclined plane acted on by an external force. (12+8)

21.

- a) Find the centre of gravity of the area enclosed by the parabolas $y^2 = ax$ and $x^2 = by$ (a > 0, b > 0).
- b) A string of length 2l hangs over two small smooth pegs in the same horizontal level. Show that, if h is the sag in the middle, the length of either part of the string that hangs vertically is $h+l-2\sqrt{hl}$. (10+10)

22.

- a) Derive the equation of virtual work for a system of coplanar forces acting on a rigid body.
- b) A body consisting of a cone and a hemisphere on the same base rests on a rough horizontal table. Show that the greatest height of the cone so that the equilibrium may be stable is $\sqrt{3}$ times the radius of the sphere. (12+8)

\$\$\$\$\$\$